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ABSTRACT

Present sand and gravel mining operations within the Lower Bay of New
York Harbor are restricted to the eest bank of Ambrose Chamnnel and to the vi-
cinity of Chapel Hill North Channel because of the concern than mining in other
areas might adversely affect water guality and shore erosion. As part of an
evaluation of environmental affects associated with expanded sand and gravel
mining we have simulated numerically tidal circulation patterns and tidal el-
evations in Lower Bay for a number of zltered bathymetries corresponding to
hypothetical mining operations. Results suggest that tidal currents will de-
celerate over the mined region and accelerate cutside of them, and that the
tidal stream will be deflected towards the region. It is also clear thar the
wining near the mouth cof the Bay cculd increase tidal range a2iong Staten Island

substantially.



INTRODUCTION

Research having as an overall goal the evaluation of environmental ef-
fects of sand and gravel mining in Kew York Harbor is presently being sponsored
by New York State Sea Grant Institute. Stated goals of this research include
an 2ssessment of the envirconmental impacts that would result from varied znd
expanded sand and gravel mining activities including different rates and patterns
cf removal in different parts of the Harbor. Present mining operations within
the Harbor are restricted to the east bank of Ambrose Channel and to the Chzpel
Hill Nerth Channel (Figure 1). These restrictions were imposed largely because
of concern of the New York Department of Environmental Cemservation that acute
ecological impacts of mining in other arezs would be greater znd that ¢hanges
in the bathymetry might adversely affect water quality and shore erosion. There
is no scientific basis for these assertions and restriction of mining to the
present area has diminished the economic value of recovered sand because it is
suitable only as fill. 1In other areas of the Harbor aggregate grade material
does occur (Figure 1) and it should be utilized if no persistent adverse effects
would occur.

Fundamental to an assessment of the environmental impacts which would re-
sult from varied or expanded mining activity is a determination of the changes
in tidal circulation and tidal elevation in the Lower Bay which would be pro-
duced by the changes in bathymetry. Using a numerical model, we have simulated
tidal circulation patterns and tidal elevations in the Bay for a number of z1-
tered bathymetries corresponding to hypothetical sand and gravel mining operaticns.
We have attempted tc assess the effects of mining activities on tidal circulation
and tidal elevation in light of these simulations. These zssessments should be
useful for the development of an effecrive management plan for sand and gravel

mining in Lower Bay.
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METHODOLOGY

The model uvsed here for the prediction of tidal circulation patterns and
tidal elevations in Lower Bzy is a finite element hydredynemical-numerical
model CAFE-1 developed under the Sea Grant program at the Massachusetts Institute
of Technology [Comnmor et ai., 1973; Weng and Connor, 1975; Pagenkopf et &l.,
19763. 1t is dased on vertically integrated continuity and momentum equatioms,
vhich are adequate for simulations of tidal circulation in the shallow waters
of the Lower Bay, and it provides for a flexible gridding stategy.

In our application of thg model, the Lower Bay is enclosed by four land
and four open boundaries (Figures2a & b). The open boundaries are at the Narrows,
at the mouth of the Raritan River from South Amboy to Perth Ambby, along the
Sandy Hook to Rockaway Point transect, and at Rockaway Inlet. The land boundaries
follow the mean low water 2 m isobath. We have subdivided the interior domain
of the Bay into 490 grid elements (Figure 2a). The grid size was refined to
about 500 m in the areas of potenrial sand and gravel mining {Figure 1) and ex-
panded in the areas where the bottom material is mud (Figure 1).

Bacic information which must be supplied is a representative mean low
water depth for each node and the time variation in surface elevaticn along all
open boundaries. This information is available from the National Ocean Survey
in the form of hydrographic charts and harmonic constants for the different
tidal constituents. TFor simplicity, we specified only the semi-diurnal lunar
M tide at the open boundaries (Table 1), aznd we zssumed that aiong an open
boundary the tidzl elevation is in phase and has & constant amplitude.

Qur main objective was tc ascess the effects of cpecific bathymetric
changes on the tidal circulaticn and tidal elevations in the Lower Bay. This
objective was met by first running the model for several tidal cycles to compute
tidal currents (Figures3a & b) and tidal elevations for existing bathvmetry (XO0S

hydrographic chart No. 12327, 70th Ed., July, 1877).

4
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Table 1. Anmplitude and phase of M, tide specified at the open

boundaries.
Boundary Amplitude Phase K
' (m) - (%)
Narrows . 0.673 220.7
Perth Amboy - South Amboy 0.737 213.2
Sandy Hook - Rockaway Point 0.676 218.¢
Rockaway Inlet 0.737 219.2



The fricticnal coefficient was adjusted to obtain reascnable esgreement
petween simulated currents and current observations made bv the Natienal Ocean
Survey and reported by Pritchard, Okubo and Menr [1562). Bottom stress rerms

in the model are in the form

(1)

M

. b fs) . . : . .
wnere T and T, &re aorizontal bottom shear stresses in the x and v directicns,

9y and qy gre discharges per unit width, H is the depth, p is the density of

the water, and C, = nzg/HI/B is the Manning's friction coefficient. We have
4

used a constant value of 0.036 sm /3 for n, and thus C

1/3

£ is inversely prepor-

tional to H Since our mzin concern was the tidal circulation, no surface
wind stress was applied.

We selected a time step of 40 seconds for the computations in connection
with the grid system in Figure 2a. This time step was determined by the Courant-

friedrichs-Lewy Criteria that requires 4t X 45/V2gH where .S is the grid spacing

nd H is the depth.

m

Having run the model for several tidal cvcles for existing bathymetry,
we tren rTen the model on the same grid for & variety of bathvmetric configura-
tions altered to represent the efifects of sand and gravel mining =zcrivities and
compared the results to those from the first run. For eight separate ceoniigu-
rations (Figure 2b) we artificiallv increased the depth te 15 m below mean low
water. The depth cf 15 m is in keeping with currentr U.S. Army Corps of Engineer's
regulations. Our objective was to assess the importaznce of both the positioning

and the areal extent of the mined region within the Lower Bav. The locetions

10



chosen cerresponds to areas of potential sand and gravel mining. This was ce-
termined by the geophvsical and sedimentalogical studies of Schubel and Fray
[Raztens et a1., 197€) who have documented the distribution and character of
the recource throughout the Lower Bay of New York Harbor (Figure 1).

Figures &4, 5 and 6 provide 2 comparisen of the tidal circulation pat-
terns before and after hypothetical mining at seven of the locations. 5olid
lines indicate the ocutline of the hyvpothetical mining area, dached arrows in-
dicate current vectors for existing bathvmetrv, and solid arrows indicate the
predicted tidal current vectcrs after the hypothetical mining to a depth of iS m
below mean low water. We have not presented a comparison for the large hole
miped in Raritan Bay; the computed tidal currents in the area for existing
bathymetry are quite low, often of the order 5 cm s ', and the change in currents
for the altered bathvmetry is at most a few centimeters per second. For selected
elements (Figure 2a) we have tabulated the magnitude of current velocities
(Table 2) to demonstrate quantitatively the effects of mining.

The tidal elevation above mean low water at each node is also computed
by the model. We have exarined the effects of mining on tidal range zlong
Staten lsland where shore ercsion has been a serious preoblem. Figures 7 and 8
provice a compariscn of tidal elevation befeore and after each of the eight

hypothetical mining activities for necdes 10 and 116 (Figure 2a), respectively.

RESULTS

The circulction patterns in Figures & through 6 dindicate that hypothetical
sand and gravel mining activities could change not only the magnitude but also
the direction of the currents. All comparisons indicate that the current vel-

ocity decreases inside the mined area (the hole) and increases outside the

11
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Figure 6 Comparison of tidal current vectors near maximum ebb
at Sandy Hook computed for existing bathvmetry (dashed
arrows) and altered bathymetry (solid arrows) for {(a)
small region, (b) intermediate size region, {(c) very
large region mined near Staten Island (see Figure 2b).
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(e}, (d) small and large region mined near Rockaway
Point; (e}, (£), (g) small, intermediate and very large
reglon mined near Staten Island; (h) very large region
mined in Raritan Bay (see Figure 2b). Tidzl datum is
discussed in text.
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perimeter of the hole. Table 2 supgests that the change in current megnitude

can exceed 20 cm s °

and c;rrents may be accelerated over some distance from
the hole. Figures 4 through & show that upstream of the mired ares the flow
is deflected towards the hole, and that the deflecrion increases with the size
of the hole. 1In general, it is clear that a large hole is cepable of accelier-
ating currents and changing their direction substantially over some distance
from its perimeter, while a smaller hole is more effective in decelerating the
currents within its perimeter,

To see why flow towards a hole first accelerates and then decelerates, it
is useful to examine the idealized problem of two-dimensional potential flow
(no friction) over a semicircular ditch with a uniform flow U_ at great distance
upstream of the ditch (Figure 9a). Milne-Thomsen (1965) derived a relationship

between the square of the current magnitude Q* and the coaxal coordinates ¢ and

n (Figure 9b) for this flow pattern:

2 _ 16 Uw2 cosh n - ¢cos € 2
e 81 (cosh 23-- cOoSs 25? (2
3 3

By examining Q2 we can see how the velocity of the flow changes as it espproaches
the ditch from infinity. At infinity Q2 + Us® (equation 2). As the flow ap-
proaches the ditch from upstream, it is mno longer uniform; the streamlines are
cempressed and the speed increases. Two points upstream of the ditch, A’ &nd

A" (Figure 9b), have been chosen to demonstrate this situation. From equatien
(2), Q% at A" is 1.12 Ux’ and Q% at A" is 1.07 Uw’. When the flow approaches

the edge of the ditch, n becomes very large and from equation (2) Q% - 15U el.
g Bl

The speed can therefore become quite large near the ditch. Once the £low has
past over the edge of the ditch, the speed decreases according to equation {2).
At the bottom of the ditch (n = 0, ¢ = 31/2), for exsmple, the speed of the flow

18
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Figure 9 Two-dimensional potential flow past a semicircular
diteh (2); coordinate system defining the coaxal

coordinate ¢ = 8; - 8, and n = In(ry/ry) used to describe
flow (b) (see text).
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is only 0.22 Uw. Similarly, from equation (2), the flow will be accelerated
downstream of the ditch.

This simple case of a two-dimensional potential flow over a ditch is
frictionless. In our problem the flow is not frictionless. Larger holes are
relatively less effective in decelerating the flow inside their perimeter than
smaller holes since bottom stress is reduced over a larger zrea and the flow
tends to accelerate.

In examining the tidal elevation in Figures 7 and 8, it is important to
realize that the time scale in both figures extends only to 16800 seconds {ab-
proximately ¥ tidal cycle) and that approximately the first 6000 seconds are
model spin-up. The solid aznd dashed lines represent tidal elevation above scme
arbitrary datum; the tide is actually oscillating about mean tide level at some
distance above that datum. With this in mind and referring to Figure 7z, for
exemple, we can see that there has actually been an increase in tidal amplitude
of approximately 6 cm at node 10 for the small hole mined near Sandv Hook.

The results presented in Figures 7a(b) and Ba(b) suggest that miniﬁg ac~
tivity near Sandy Hook could increase the tidal range along Staten Island
substantiallv. The smal]l hole near Szndy Hook will increase the tidal emplitude
at node 10 by 6.3 cm and at node 116 by 4.9 cm. The large hole near Sandy Hook
will increase the tidal amplitude at node 10 by 15.3 cm and at node 116 by 11.6
cm. Results for mining near Rockaway Point are similar (Figures 7c¢(d) and 8c(d)).
Tne smell hole will increase the tidal amplitude by 7.3 em znd 9.9 cm at nodes
10 and 116, respectively. The large hole will increase the tidal amplitude at
node 10 by 10.8 cm and at node 116 by 10.3 cm. This suggests that the tidal
range along Staten Island might increase zs a result of anv increased sand and
gravel mining activity neer the wmouth of the Bay. The degree of increase in

tidal range seems to be determined by boeth the location and the size of the hole.

20



The effect on tidal range of mining activity near Staten Island (Fig-
ures 7e through 7g and 8e through 8g) is much less than that associated with
mining near the mouth of the Bay. At node 10 all three holes tend to decrease
the tidal amplitude slightlv; at node 116 the smallest hele tends to decrease
the tidal range, the larger one has little affect, and the largest hole tends
to increase the tidal range slightly. The nature of the change in tidazl am-
plitudes at noce 116 seems to be determined primarily by the position of the
hole. At points near the hole the tidal ranpge increases; at points distant
from the hole the tidal ranges decreases, Figures 7h and Bh indicated that tﬁe

large hole in Raritan Bay has almost no effect on the tidal range along Staten

Island.

CONCLUSIONS

It is apparent from the current simulations that increased sand and
gravel mining would change the tidal circulation patterns in the Lower Bay,
Currents will decelerate within the holes and accelerate ocutside of them. The
water upstream of a hole is deflected towards the hole. Larger hcles are more
effective in changing the magnitude and direction of the current outside their
perimeter while smaller holes are more effective in decelerating the current
within the hole.

It is alse clear that hypothetical mining near the mouth of the Bay
could increasse the tidal range along Staten Island substantially; the cdegree
of increase would depend on the location and size of the hele. Mining activity
pear Staten Icland would zlter the tidal ranmge slightly and mining within
Raritan Bay would have almost no effect on the tidzl range aleng Staten Island.

We can cenclude that expanding the sand and gravel mining activities

21



east of Ambrose Channel and near the mouth of Lower Bay could alter the cir-
culation pattern somewhat. A possibly more important effect, however, would be
the substantial increase in tidal range along Staten Island. The effects of
mining west of Ambrose Channel would be similar. This increase in tidal range
mignt aggrevate the probtlem of shere erosion along Staten Island; it could,
however, have the beneficial effect of jmproving flushing rates between Raritan
Bay and the eastern part of Lower Bay. Mining activities further removed fIrom
the vicinity of the mouth of Lower Bay cshould produce less of &n increzse in

tidal range along Staten Island,
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NOTATIORN
Mznning's Frictional Ceoefficient
gravitaticnzl acceleratio?
depth
discharge per unit widgﬁ in X directicn
discharge per unit width in 7 direction
gguare of current speed
uniform stream a2t infinity
coaxal coordinates, see Figure 9
density of the water
bottom shear stress in x direction
bottom shear stress in v direction
grid size

time increment
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